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Results on ShapeNet-55: Results on Pascal3D+:
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MCSV learning
» IS more scalable Input Image
» enables data pooling to learn category-agnostic features
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But this learning setting makes the shape-viewpoint entanglement
problem even harder to solve:
Limitation:

» E:Image encoder > fg:implicit SDF MLP > fr:implicit RGB MLP L. . . L .
. . | | | » training instability due to the adversarial regularization, particularly
Can we better constrain the shape learning? » H: hypernetwork > V:viewpoint estimator » R: learnable renderer on real-world images with many categories
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